2020年1月27日月曜日

RF Power LDMOS Transistor

 昨今RF用のパワートランジスタが入手できなくなってきた。最近私が好んで使っているのは三菱のRDシリーズ(RD16HHF06等)である。好んでというよりは選択肢がないというのが正解であろう。非常に使いやすいが、アイドリング電流が大きい等の課題もある。
 そんな折、自作仲間からMOSが良さそうだという情報を頂いた。早々色々検索をしてみたが、自作で使用している例はほとんどなかった。そこで実験をしてみることにした。
 候補としては、国内である程度の価格で購入できるRQA0009TXDQS(RENESAS)とAFT05MS004NT1(NXP)とした。
いづれも400MHzで5W程度のFETで、中華製のハンディートランシーバー等に使用されている。実際にいづれもHF,VHFで5Wの出力を確認できた。データシートのデータではいづれもVd=7.5Vとなっていて、やはりモバイル用機器用と思われる。2つを比較するとRQAのVdss=16Vで13.8V仕様では低すぎる。AFTはVdss=30Vでどうにか13.8Vで使えそうであることが分かった。マージンを考えると40Vはほしいところである。もちろん13.8VでAMは無理である。CW,SSBなら何とか使用できそうだ。実際に使用して確認していきたい。
 ということでAFT05MS004NT1で製作してみた。AFT05MSはLDMOSというFETで最近の主流となりそうなものである。

 使用例がないので、いつもの定番回路で実験してみた。
入力はコンデンサー直結の非同調で、バイアスを可変抵抗で調整できるようにした。また、ゲート側の抵抗を分割し51オームでAC負荷とした。これにより信号源インピーダンスを落ち着かせることができるのではと思っている。
 出力側はトロイダルコイル(FT-37-43)による広帯域とした。回路図と写真を参考にされたい。

 この回路で動作させた結果をグラフで示した。思いのほか高性能である。また、同一回路で三菱のRD16HHF06を使用したものよりも広帯域に動作し、HF~50MHzにおいてほぼ同様の結果となった。50MHzでも増幅度27dB程度ある。(fig1) 効率も60%を超え優秀である。Vd:13.8V アイドリング:100mA 入力:10mW 出力:5W Id:0.6A)

 入出力特性もリニアである。非常に良い結果が出た。周波数で50MHz以上で低下しているのは回路設計の問題で、VHF,UHF用に設計すれば同様の特性が得られることは間違いないと思う。(fig2) もともとVHF,UHF用だから当然である。
 この結果は大いに満足できる。HF~50MHzのオールバンドトランシーバー製作に弾みが付きそうだ。

 今後の課題は、形態がSOT-89というチップタイプであり、十分放熱できるように取付方法を検討する必要がある。写真のような基板構造では放熱効果が低く基板がかなり熱くなり、基板上の部品の温度変化等も含めアイドリング電流が増加していく。冷えれば戻るが。実験ではCW連続信号なのでなおさらであるが。SSBならこれよりはましだとは思う。
一応この構造で5分の連続運転でも無事ではあった。
 このAFTシリーズには、15W,30W出力のものもあるようなので、機会があれば入手して実験したいと思う。

 これがうまく稼働すれば、2SC1970,2SC1971,2SC1972といったトランジスタに代わるものとして使用できるのではないかと期待している。
 尚今回JA2GQPさんが基板を製作され提供して頂いた。いつもながら深謝。
 FETの入手先はマルツ(Digi-key代理店)

DE JA2NKD

2020年1月2日木曜日

Happy New Year 2020

本年も宜しくお願いいたします。
                         JA2NKD Ryuu

2019年8月24日土曜日

RF 2-Tone Generator

 Si5351は違う2種類の周波数を発振させることができる。ひょっとしてこれでRF2tone発振器ができるのではと思いついた。(誰でも想像すると思いますが)しかし小さなICで比較的高出力であること、また出力が矩形波であることから、高調波、PLLノイズ等が多く、発振器自体のIMにはあまり期待はできないと思った。しかし一度実験してみようとこのプロジェクトを開始することとした。


 高調波、低調波を減らすにはローパス、ハイパスではなく、バンドパスが必要である。それもかなり狭帯域としたい。そこで思いついたのがクリスタルフィルターだ。手持ちのクリスタルフィルターを見てみると10M15Aという15kHz/3dBのFM用のものがあった。10kHz離れならば問題なく、20kHzでもなんとかなると思いこれを使ってみた。
Inside

 クリスタルフィルターで歪まないようにSi5351の出力に10dBのアッテネーターを付け合成した後、このフィルターを通して出力している。結果は出力-20dBm IMは70dBc近辺となった。どうにか最低の合格ラインとすることができた。これならばある程度のIM3測定で使えるのではないだろうか
 できれば0dBm出力、IM80dBcはクリアしたいところである。この場合は各出力を合成前にフィルターを挿入し、増幅した後合成すれば達成できると思う。今回は前記の簡易型とした。

 10.7MHzのフィルターに対してきりの良い周波数(20kHzならば、10.690,10.710)となるはずであるが、SI5351のずれとフィルターのずれがあるので、周波数をずらして対応している。スペクトラムアナライザー等で2周波の出力が同じになる位置を探し出すところが、やや面倒かもしれない。10kHz以上の帯域を持ったフィルターがあれば別周波数でも可能である。


 Arduinoは、ATmega328にブートローダーを書き込んだもの(UNO互換)を使用して省スペース化を図った。もちろんNANOでもOK。Si5351はAdaflute互換の中華製を使用した。

 回路とスケッチはダウンロードサイトにあります。

 SI5351は150MHzまで出力できるが、フィルターという固定周波数の素子をいれているため、周波数可変はできません。しかし簡単に発振させることができることと、中華製で安価に入手できることから活用しない手はない。

Generator OUT

0-100MHz Spectrum

20dB Wide band Amplifier Measurement

 

2019年7月24日水曜日

Remake VFO Controller Ver 7.10 (Arduino + Si5351)


   注)改定情報を末尾に記載(Ver 7.20)
 Arduinoを使用したVFO-controllerを製作してから3年経過した。世界各国から色々なコメントを頂き感謝感謝です。この間、受信機等の製作に合わせてそのたびに色々な種類のcontrolerを作ってきた。これには結構なパワーが必要であり、無駄も多くなっている。
 今回このことを反省し、各種機能を取り込んだcontrollerを製作した。今後色々なシステムに合わせて改良しやすいように考慮したつもりである。ただプロセッサーにArduino-nanoを使用しているため、多少動きが良くないところもある。これは今後の課題としたい。
【特徴】
 今回の特徴としてバンドというイメージがないことである。VFOは1-54MHzまで連続して可変する。最近のメーカー製リグでは当たり前であるが。スケッチを変更すれば、この範囲は変更できる。バンド切り替えがない代わりにBPF,LPF等の選択を行うようにしている。適切なBPFが選択されていないと送信できない措置も行っている。このことから60MHz位のLPFを使用すればGENERALレシーバーとして使用できるメリットがある。できれば周波数に合わせて自動的にフィルターが選択できればいいのであるが、フラッシュメモリーが不足であることと、処理スピードが遅くなりうまく表示できない。もう1ランク上のプロセッサーが必要である。
 2つ目の特徴として、メーカー製リグでは当たり前であるが、2VFO(A,B)を持ち、A=B,A/B、SPLIT機能を設けた。メモリーは最大30チャンネルとした。メモリーからVFOへの移行も可能。
 3つ目の特徴としてtransverter対応としている。このモードは28MHzをベースとして144,435MHzに対応できる。VFOとしては28MHzと動作し、表示を144,430とする機能であり、同時にtransverter制御用の出力を用意した。
 ハードウェアの特徴としてI/O増設のためI2C用の PCF8574 を2個使用しスイッチ用に8ビット、BPF,MODE情報の出力用に8ビット増設している。
 VFO発振にはSi5351を使用し、54MHzまで対応できる。また昨年ブログに掲載したdsPICを使用したPSN送信機にも対応できるように考慮している。この場合受信周波数の2倍の周波数が必要となるので最大54MHzの場合108MHzの出力となる。

【Specification】

  • Rx Frequency Range     1MHz-54MHz
  • Tx Frequency Range     1MHz-54MHz (Ham band only)
  • Emission Modes           CW,AM,LSB,USB,FM (Max 5 modes)
  • Frequency Steps          10H,100H,1kH,10kHz,100kHz,1MzH
  • Memory Chanel           1-30 Chanel
  • BPF           1-15 (MAX 15)
  • meter          S-meter , PO-meter
  これら仕様は最大値で、カスタマイズして小規模用に容易に変更できるようにしている。
【Function】
  • VFO-Mode
          VFO A=B      Copy VFO-A to VFO-B
          VFO A/B       Main VFO Change A to B  B to A toggle
          VFO SPLIT    Main-VFO Rx   Sub-VFO TX 
  • Memory-Mode
          Memory Wite     1-30CH(Friquency,Mode,Step,BPF,SPLIT)
          Memory Read    1-30CH
          Memory to VFO  Memory Cnanel copy to VFO
  • Transverter-Mode
          144MHz,430Mhz   Base friquency is 28MHz
                                     144Mhz - 146MHz (28MHz-30MHz)
                                     430Mhz - 440MHz (28MHz 38MHz)
  • Tune
    Tune   送信機調整用に例えば1kHzを音声回路に送れるように送信時に
         1kH発振ができるようにI/O出力を用意
  • Si5351 Adjust-Mode
    Turbo-switch+Power ON でAdust-modeになり,25MHzが出力される。
    周波数カウンターに接続しUP/DOWNスイッチで調整できる。
  • Turbo
    エンコーダーでの変化を10倍にする機能。
    STEP 10Hzの時に、Turboを押しながら回すと100Hz STEP
    STEP 100Hzの時に、Turboを押しながら回すと1kHz STEP

【MEMO】
  ロータリーエンコーダーを回したときに周波数表示が多少ぎこちない。これはArduino-nanoのSPI速度の問題と表示アルゴリズムのもお題だと思われる。これにはより高速なプロセッサーが必要と思う。近い将来STM32やArduino-mega,Due等に乗せ換えたいと思う。またキャラクタLCDを使用したライトなものも用意したいと思う。
動作の詳細はマニュアルと回路図を参照してください。スケッチ&manualをダウンロードサイトにUPしてあります。

73's JA2NKD






改定(2019.10.22):回路図 修正 スケッチ 修正
改定(2019.12.02):回路図 修正 スケッチ 修正 Ver.7.20


2019年5月21日火曜日

UHF Transceiver using DRA818 module


久々の投稿になってしまいました。何もしていないわけではありませんが、投稿に至る完成品がありませんでした。
 今回はお世話になっているJA2GQP OMから紹介いただいたトランシーバーモジュールを使ったハンディートランシーバーである。
 モジュールはDORJI(中国メーカー)のDRA818Uという400-470MHz用のFMトランシーバーである。この他に140Mhz帯用もある。いろいろなトランシーバーを作っているようだ。
DRA818Uの仕様は概略以下の通り
周波数範囲:400-470MHz
チャンネルステップ: 12.5kHz,25kHz
出力:0.5W,1W
CTCSS/CDCSS: Tone
電源:3.3V-4.5V サイズ:W35.6 H:19mm


この大きさで1Wトランシーバーが入っている。中国製のトランシーバーには、これらのモジュールを使用しているようだ。内部にはDSP等デジタル化されている。
このモジュールに、AF用アンプ、マイクを付けてマイコン等で制御すればトランシーバーの完成である。

【製作】
 ハンディータイプとする。ケースはタカチのバッテリーケース付きプラスチックケースLC135H-M3を使用。コントローラーはDRAの電源範囲が3.3-4.5Vなので3.3V仕様のArduino Pro mini(3.3V 8MHz)を採用。表示にはOLED128x32(I2C)、AFアンプには秋月で仕入れたD級AMP(HT82V739)キットを使用し小型化、簡略化を図った。
 基盤には、400MHz帯であることを考慮し、メッシュアースユニバーサル基板(ICB-98DSE)をケースに合わせてカットして使用。モジュールは、基盤をくり抜き収めている。
PCB
回路は、至極簡単なので回路図を見ていただければご理解いただけると思う。
Schematics
回路図はダウンロードサイトにPDFがあります。
Inside View

内部の配置は上の図を参考に。

【Arduino】
 今回はモジュールが3.3Vなので直結できるメリットからArduino Pro mini(3.3V 8MHz)を使用した。Pro miniはUSB[返還を搭載していないので、外部に用意する必要があるが、小型でありnanoと同様に使える。
  • DRAコントロール
     DRAコントロールは「ATコマンド」で行われる。
     ”AT+DMOSETGROUP=”に続いて受信周波数、送信周波数、スケルチレベ
     CTCSSコードをテキストベースで送信する。
  • PTT
     DRAのPTT端子をLOWにすると送信。今回はPTTスイッチを一度Arduinoに取り込んで、I/Oに出力しDRAのPTTをLOWにする。
  • Squelch
     スケルチスイッチをAruduinoに取り込み、一度押すとOFF、再度押すとレベル1にセットするようにしている。最大8レベルまであるが、今のところ1で十分のようだ。
  • OLED
     OLEDはI2C仕様の128x32のものを採用。周波数表示のみである。
  • Rotaly Encoder
     Rotaly.hライブラリーを使用した標準的なもので、25kHz STEPで加減算している。
これ以外にもDRAにはいくつかのコマンドがあるが、今回はシンプルな制御としている。
スケッチはダウンロードサイトにあります。

【使用感】
  出力はLPF経由後で0.5W程度。MAX1Wであるが、電源電圧が3.6V程度なのでこれくらいだと思う。また、スプリアスを規定値に収めるためにはLPFは必須である。製作は回路図に示しているようT型の簡単なものであるが、十分効果がある。
 受信感度は、思いのほか良い。FT991と比較してもさほど差がないように感じる。
やはりこの周波数ではアンテナの効果が大きいようだ。
 STEPが25kHzなので100kHz単位でないとチャンネルプランに逸脱してしまう。
その面ではいまいち使いにくい。別会社で5kHz STEPのモジュールもあるので、機会を見て2台目を製作してみたいと思う。
 このモジュールが千数百円で入手できるとは。思えば2BANDトランシーバーが数千円で売っている。







基本はより下のノイズが気になる。後日調査予定。上側はきれいにLPFが利いている。










追記(2019.05.28):
 送信試験をおこなっていたら、変調音にノイズが入ることを確認。調査してみるとOLEDのノイズであることが判明。OLEDは結構ノイズが出るとは認識していたが、今回実際問題となった。受信音には問題なかった。
 そこでスケッチを改良し、送信時にOLEDをスリープさせ表示を消すようにした。これによりノイズは消えた。ハンディータイプなので送信時に表示がなくても問題がない。
修正スケッチはダウンロードページに追加しました。(NK430_101.ino)

2018年12月4日火曜日

AD4351 PLL Board

 AliExpressでAD4351PLL基板が格安で販売されているのを見つけ購入した。
ADF4351 35M-4.4GHz PLL RF Signal Source Frequency Synthesizer Development Board Z07 という名称で出ている。価格は $18.8である。
取り敢えず動作確認を行ってみた。
このボードの仕様は
Requency range: 35MHz-4.4GHz
Power supply: DC002 Interface DC4-9V typical 5V
Output signal: 2.2-4.4GHz fundamental wave (sine wave)
Output signal interface: SMA female
Default + -50ppm 25M import active crystal
Control: three-wire SPI control pins and lead locking pin allows all state functions,
including point frequency sweep and frequency hopping, stepping to be 1K,
low frequency step can be to 0.1K, the crystal. to decide.
Size: 7.6*3.7cm/2.99x1.46inch
と書かれている。
基本発振周波数は2.2GHz~4.4Ghzでそれ以下は1/2,1/4,1/8,1/16,1/32,1/64のプリスケラーで分周して出力するようになっている。
分解能はPLLの比較周波数に依存するため、基準信号とレジストリーの設定で色々出来るようであるが、Si5351PLL並みに面倒な設定が必要だ。今のところこのPLLをVFOとする予定はないので詳細のお勉強は後回しとして、色々公開されているファームウェアを使って動作試験を行った。
 ハードウェアは、Arduino-UNO、LCDシールドとこのPLLボードの3つである。(いづれも中華製である)
これで35MHz-4.4GHzまでの発振試験が出来る。
ハードウェアの構成及びファームウェアは以下をそのまま利用させていただいた。今回はオリジナル性はまったくない。

このPLL基板には基準クロックとして25MHzのクリスタル発振器が搭載されている。+-50PPMとかかれており、試験したところ1GHzで15KHz程度ずれていた。調整も不可能である。そこで手持ちの発振器(10MHz,+-2.5PPM)を外付けとした。これで取り敢えず1GHzで10Hz誤差程度に収まっている。
 
35MHz,430MHz,2GHzの出力を見てみた。
35MHz
クロック等のスプリアスが見られるがBPFで十分削除できるレベル。想定外に綺麗である。

430MHz
スパンが広いので色々見えているが、BPF等で十分対処できると思われる。
2GHz-1
これを見るとかなり近接スプリアスが多いように見える。
2GHz-2
スパンを500MHzにすると基準10MHzのスプリアスと思われる。BPFでどれだけ削減できるか実験が必要だがコンバーターの局部発振としてなら十分使えそうだ。

我家での発振周波数としては最高値を更新。4GHzも発振していると思われるが測定限界(3GHz)を超えており確認できない。PLLのLockが頼りである。

これを使う予定としては、430MHzのトランスバーター用ローカル発振器である。28MHz親機でカバーできる範囲が2MHzなので、2MHzステップでローカル発振器を切り替えることにより430MHzの10MHzをカバーしようという企みである。
出来れば1.2Gにも挑戦してみたいものである。

しかしこれが$18.8とは驚きである。