ラベル Linear の投稿を表示しています。 すべての投稿を表示
ラベル Linear の投稿を表示しています。 すべての投稿を表示

2021年7月24日土曜日

ALL BAND TRANSCEIVER (4)

 今回の ALL BAND TRANSCEIVER で色々な課題があった。今回解説するBAND,MODEの制御もその一つである。
 タッチパネルで選択したBANDやMODEは数値化され制御を行う。具体的には変数 [BAND] 変数[MODE]に選択した数値情報が収納される。

 上図でPHOT1でBANDをタッチ、PHOTO2で希望BANDをタッチすると変数[BAND]にBAND番号が収納される。この変数を2進数にして各BITのHigh,Lowを調べI/Oに出力をしている。
全部で14BANDなので4BITバイナリーでD14,15,16,17に出力している。
sketchでは、
void DIO_BAND_set(){
  int bitdata = 0;
  int port_num = 0;
  for (int j=0; j<=3; j++){      // ポートをLowにリセット
    digitalWrite(14+j,LOW); 
  }
  for (int j=0; j<=3; j++){  
   bitdata = bitRead(band,j); // 変数[band]の各Bitを調べる。
    if (bitdata == 1){
     digitalWrite(14+j,HIGH);   // 1なら当該ポートをHighにする
    }
    else{
      digitalWrite(14+j,LOW); // 1以外なら Lowとする。
    } 
  }
}

Modeも同様にしてD18,19,20,21に出力している。

 Aruduino DueのD14-21ポートに出力されたBAND,MODE情報は、以降の処理に使いやすいように(FXMA108)で3.3Vから5Vにレベル変換をしている。
 BAND情報はD14-17から出力されレベル変換後TC4515デコーダーを使用し、各BAND個別信号を出力している。このTC4515はActiv Low 選択された信号がLow、それ以外がHighとなる。このためPNPデジタルトランジスタ(RN2201)を利用し選択された受信用BPFに電源を供給するようにしている。
 送信も同様にBPF選択を行っている。送信ではさらに TD62084というSink Driverで出力のLPFリレーを制御するようにいている。

MODEも同様であるが、選択数が少ないのでデコーダーに74HC238(3INー8OUT)を使用いた。これはActiv HighなのでNPNデジタルトランジスタ(DTC144)を使用しColinsフィルター切替を行っている。

尚、BAND情報は、Linear と Transverterのためにバッファ(74HC125)経由でDINコネクタに出力している。

 さすがにALL BAND TRANSCEIVERともなると、フィルタ、BPF、LPFの切り替え処理が非常に煩雑となることを実感した。今回極力手持ち部品を使用したため、どうも一貫性のない回路となった感じである。ご容赦願いたい。

今回は、あまり日の当たらない部分の解説なので、少々つまらなかったもしれませんが、備忘録としてUPしておくこととした。

DE JA2NKD Ryuu







 




2021年7月4日日曜日

ALL BAND TRANSCEIVER (3)

 ALL BAND TRANSCEIVER (3)

送信部


❶ マイクアンプ  
  マイクアンプは、コンプレッサーTA2011SとOPAMP(LM741)を切り替えるようになっている。またSSB送信試験用に1kHz発振回路を組み込んでいる。これで口笛による調整から解放される。この3回路をOPAMP(NJM7043)でミキシングしSSBはPSN回路に、FMはFMキャリア回路に送っている。
 
❷ AF-PSN回路 
以前blogに掲載した50MHzPSN送信機と同様の回路で dsPIC33FJ64GP802を使用し位相のずれたAFを作っている。このdsPICのソフトはTJ-Labの上保さんの作成されたものであるが、非常に優秀である。
 
❸ 直交変調器
 これも50MHzPSN送信機と同様MAX2452を使用している。特に調整回路がないのでキャリアバランス等の調整は行っていない。AFレベルを調整しても効果がなかった。何とか40dB程度である。他にも直交変調器のICはあるようだが、ほとんどがGHz用であり、HFに使えそうなものは見つからない。またDBMやスイッチを使ってディスクリートで組むこともできるが、回路規模が大きくなってしまう。その点MAX2452は外付け部品もなく簡単である。また運用してモニターしいただいているが、おおむね音質はよく、キャリア、逆サイド等は認められないとの評価をいただいている。この直交変調器にSi5351によるVFOを直接入力している。このVFOの周波数は運用周波数の2倍を入力している。50MHzであれば100MHzとなる。これで全バンド ダイレクトにSSBができる。
 
❹ 前置増幅器 
MAX2452の出力は非常に小さいのでMMIC(MSA-0886)で25dB程度増幅している。

❺BPF
直交変調器で出来たSSB信号をBPFを通すことによりスプリアスを除去させている。BPFは「トロイダル・コア活用百科」の2ポールBPFを使用した。

 ❻前置増幅器
 目的出力を得るにはまだ低いので再度MMIC(MSA-0886)で再度25B程度増幅する。オールバンドにはMMICが得意だ。
 
❼プリアンプ 
ファイナルをドライブするため100mW程度に増幅する必要がある。三菱の高周波パワーFETRD00HHS1を使用している。アイドリングは50mA

❽パワーアンプ
RD16HHF1プッシュプル。出力は10W以下なので十分すぎるが、全バンド安定して増幅するために採用した。ドライブレベルを調整し概ねMAX 8W 程度の出力としている。バンド差が大きく出てくるかと思ったが、意外にそろっている。

❾LPF
λ/4 5次LPFで「トロイダル・コア活用百科」を基本として設計している。

❿FMキャリア水晶発振器
ジャンク水晶67.18235MHzを基本波発振させ3逓倍し67MHz台としている。これにバリアブルキャパシタダイオードにマイクアンプからのAF信号でFM変調を行っている。オーバートーン発振ではほとんど変調がかからないので注意。

⓫FM用ミクサー
⓫の水晶発振信号とVFOを混合し目的のFM信号としている。以降はSSBと教養である。

⓬オシレータ回路
今回周波数の安定度、正確性を確保するためにオシレーター回路に拘った。必要とする周波数は、70.455MHzの第一中間周波数を455kHzに落とす70MHz、455kHz前後のSSBキャリア信号及びVFOである。
 70MHzhDDSAD9851を使用している。このDDSクロックは10MHzのTCXOを基準としてVCXO30MHzを PLLを組み安定化し供給している。またVFO(Si5351)用のクロック25MHzも30MHzクロックのAD9851で作っている。455kHzキャリアは10MHz基準のAD9850から作り出している。これらはすべて固定周波数なのでArduino-nanoを使用しコントロールしている。10MHzは外部からGPS基準信号等が入力できるようにしている。詳細は下部回路図を参照願いたい。こだわりのOSCである。

⓬VFOコントローラー
 今回はマルチバンドトランシーバーなので以前blogに掲載したタッチパネル付きVFOコントローラーを基本として採用している。ただこのトランシーバー用にカスタマイズしている。
 コントローラーにはAruino-Dueで、メモリー容量、スピード、I/O数等十分な性能がある。難点はどうしても大きいことであろう。特徴としてtっちパネルを採用し、多機能でありながら機械的スイッチの数を大幅に減らすことが可能となった。

⓭CATコントロール
Arduino-DueはUSBを2回路積んでいる。1個はプログラミング用、もう一つは外部機器との通信に使用できる。これを利用しパソコンと接続し「Turbo HAMログ」でデータ入力時に周波数を自動的に表示できるようにした。基本的な通信g理解できたので、トランシーバーを外部からコントロールできるようにすることも可能である。今後発展させていきたい。

 以上オールバンドトランシーバーの概要です。詳細については 省略させていただきます。

DE JA2NKD









 

 

2020年1月27日月曜日

RF Power LDMOS Transistor

 昨今RF用のパワートランジスタが入手できなくなってきた。最近私が好んで使っているのは三菱のRDシリーズ(RD16HHF06等)である。好んでというよりは選択肢がないというのが正解であろう。非常に使いやすいが、アイドリング電流が大きい等の課題もある。
 そんな折、自作仲間からMOSが良さそうだという情報を頂いた。早々色々検索をしてみたが、自作で使用している例はほとんどなかった。そこで実験をしてみることにした。
 候補としては、国内である程度の価格で購入できるRQA0009TXDQS(RENESAS)とAFT05MS004NT1(NXP)とした。
いづれも400MHzで5W程度のFETで、中華製のハンディートランシーバー等に使用されている。実際にいづれもHF,VHFで5Wの出力を確認できた。データシートのデータではいづれもVd=7.5Vとなっていて、やはりモバイル用機器用と思われる。2つを比較するとRQAのVdss=16Vで13.8V仕様では低すぎる。AFTはVdss=30Vでどうにか13.8Vで使えそうであることが分かった。マージンを考えると40Vはほしいところである。もちろん13.8VでAMは無理である。CW,SSBなら何とか使用できそうだ。実際に使用して確認していきたい。
 ということでAFT05MS004NT1で製作してみた。AFT05MSはLDMOSというFETで最近の主流となりそうなものである。

 使用例がないので、いつもの定番回路で実験してみた。
入力はコンデンサー直結の非同調で、バイアスを可変抵抗で調整できるようにした。また、ゲート側の抵抗を分割し51オームでAC負荷とした。これにより信号源インピーダンスを落ち着かせることができるのではと思っている。
 出力側はトロイダルコイル(FT-37-43)による広帯域とした。回路図と写真を参考にされたい。

 この回路で動作させた結果をグラフで示した。思いのほか高性能である。また、同一回路で三菱のRD16HHF06を使用したものよりも広帯域に動作し、HF~50MHzにおいてほぼ同様の結果となった。50MHzでも増幅度27dB程度ある。(fig1) 効率も60%を超え優秀である。Vd:13.8V アイドリング:100mA 入力:10mW 出力:5W Id:0.6A)

 入出力特性もリニアである。非常に良い結果が出た。周波数で50MHz以上で低下しているのは回路設計の問題で、VHF,UHF用に設計すれば同様の特性が得られることは間違いないと思う。(fig2) もともとVHF,UHF用だから当然である。
 この結果は大いに満足できる。HF~50MHzのオールバンドトランシーバー製作に弾みが付きそうだ。

 今後の課題は、形態がSOT-89というチップタイプであり、十分放熱できるように取付方法を検討する必要がある。写真のような基板構造では放熱効果が低く基板がかなり熱くなり、基板上の部品の温度変化等も含めアイドリング電流が増加していく。冷えれば戻るが。実験ではCW連続信号なのでなおさらであるが。SSBならこれよりはましだとは思う。
一応この構造で5分の連続運転でも無事ではあった。
 このAFTシリーズには、15W,30W出力のものもあるようなので、機会があれば入手して実験したいと思う。

 これがうまく稼働すれば、2SC1970,2SC1971,2SC1972といったトランジスタに代わるものとして使用できるのではないかと期待している。
 尚今回JA2GQPさんが基板を製作され提供して頂いた。いつもながら深謝。
 FETの入手先はマルツ(Digi-key代理店)

DE JA2NKD

2018年10月14日日曜日

50MHz PSN Transmitter using dsPIC

 前回のブログにUPしたdsPICを使用したSSB-Generatorを元に50MHz送信機を制作してみた。
 dsPICによるPSNについては前の投稿を参照願います。
Front View

【構成】
 SSB信号は、dsPICと直交変調器(MAX2452)の2個のICで出来てしまう。従来のフィルター式のものと比べると非常に簡単である。あとは、これらを送信機とする付属回路である。これらについてはごく一般的な回路なので特段説明の必要はないと思うが、簡単に以下に纏めた。
Block diagram
  • Mic Amp
     マイクアンプはTA2001Sを使用。性能は今一歩であるが、簡単にコンプレッションが使える。

  • Mixer
     今回色々試験を行えるように外部音声入力を付けたことと、送信機試験のために1kHzの発振器を組み込んだ。(最近年のせいか口笛がにがてなので)そのためにオーディオミクサー(1/2 MC1458)を設けた。それぞれのレベル調整を半固定抵抗で行いミクサーに入力している。その後にマイクゲイン調整用可変抵抗をパネル部に設けている。その後1段の増幅器(1/2 MC1458)を通してdsPICに入力している。
     1kHz発振器は一般的なCR位相発振器で、この信号を送信機の最大出力になるようレベル調整してある。今までは外部からオーディオ信号を入力していたが、簡単な発振器を組み込むと至極便利である。

Mixer

Phase Shift
 dsPIC33FJ64GP802を使用しオーディオ信号からPSN信号(0,90,180,270°)を作っている。また300-3kHzのBPFが組み込まれており、不要輻射の無い綺麗な信号が形成される。
 詳細は前回のBlogを参照。(これを作られた上保さん(JF3HZB)にはサポートもしていただき 深謝)
 位相差信号はオーディオ帯域においてほぼ完ぺきなリサージュ波形が観測されている。(前回のBlog記事参照)
Phase Shift (dsPIC33FJ64GP802)

  • Quadrature Modulator
     MAX2452の日本語データシートには直交変調器と書かれている。このICはオーディオ位相差信号を入力しVFOから送信周波数の2倍の周波数を入力すると、SSB信号ができる非常に便利なICである。内部には発振回路もありPLL回路等と組み合わせることができるようになっている。今回は外部(Si5351)から入力している。
     SSBモード(USB,LSB)の切り替えは位相差信号を入れ替えることにより簡単に変更できる。回路図の通りリレーを使いマイコン(Arduino)で制御し切り替えれれるようにした。
     MAX2452の出力は平衡であり、レベルも低い。トランスで平衡-不平衡変換しFET(2SK439)のソースフロアで受け、その後MMIC(Monolithic Microwave Integrated Circuit)のSGA4586を使用している。以前秋月で販売されていたが、最近は見ない。この後に7Kコイル(FCZ50)2段のBPFを入れてある。これでどうにか-10dBm程度の出力が確保された。

Quadrature Modulator

  • Linear
     今回リニア部分は手抜きで、以前作成したHF用QRPリニアをそのまま使用した。構成は(RD00HHS1-RD06HHF1)である。HFでは5Wであるが、50MHzでは3W弱である。回路を見直せば5Wは出せると思うが、QRPとしてはちょうどよいので、このままとしている。

Linear Amp
  • Control
     送信機としてのコントロール回路として、Arduino-UNOを使用。UNOと言っても既製品のボードではなく、ATMEGA328にUNOのブートローダーを書き込んだものを単体で使用し、省スペース化を図った。これ用の基板はaitendoで販売されている「あちゃんでいいの」を使用している。表示はキャラクタLCD(2x16)にI2Cインターフェース(PCF8574A)を使用しArduinoに入力、VFOもI2Cで使用できるSi5351を使用。これに夜rArduinoのI/O端子も節約できる。
     VFO周波数は出力周波数の2倍の周波数が必要なので、この意味からもSi5351が適任である。Si5351から出力された信号は、7kタイプのコイルボビンで100MHzに同調させたものを2個使用したBPFを通してMAX2524に入力している。
     今回「TUNE」というスイッチを付け、押している間だけ1kHzオーディオ信号を発信させ、同時に送信状態として試験できるようにした。


Control (Arduino ATmega328)
  • Other
     今回dsPICを使用したPSN送信機として初めての製作なので、色々実験ができるようにした。1kHzOSCもその一つであるが、コイルをプラグインにして他の周波数でも実験できるようにした。プラグインは写真のようにユニバーサル基板にピンヘッダーを付けてソケットに差し込む形とした。
     また、受信機とのトランシーブを考慮して、PTT,VFO切り替え、モード情報をコネクタに用意してある。これに対応できる受信機が次の目標となる。
     またこの製作を基礎にオールバンド送信機を製作したい。
【動作】
  ローカル局に音質モニターをお願いしたところ、非常にクリアで音質に問題はないとの評価をいただいた。やはり想定通りPSNはいい音のようである。
 また、フィルター式と違い調整個所がなく、キャリア漏れや、逆サイドの漏れも感じない。製作が簡単で、性能がいい送信機となったようだ。
 これが実現できたのも上保さんの作られたプログラムのお陰である。サジェッションを含め 深謝
Back View

【参考回路図】
 回路図を以下に掲載




It is hard for me to write in English, so I write it in Japanese. If you have any questions, please write an email or comment.
I'm sorry
Let's enjoy homebrew.
73’s
JA2NKD Ryuu

2019.02.28 Mixer schematic corrected

2017年12月28日木曜日

Linear Amplifier for Knobless Wonder

 最近VK3YEが公表したKnobless Wonderという究極のSSBトランシーバーを製作した。コンディションによっては全国とQSOできる事は大きな驚きであった。しかし出力2Wで、最近の電波コンディションの悪さからなかなかQSOが出来ない日もある。。そこでお助けマシーンとしてリニアアンプを作った。

 10Wも出ればいいのであるが、部品箱を漁っていたらMRF255が出てきた。一時秋月で格安で放出されていたのでお持ちの方も多いと思う。IMDがあまり良くないとか言われているが、軽く使うには手ごろなFETと思う。電源電圧12Vで使えるところもいい。
 回路は作りやすさ、確実性、効率をある程度考慮した。
 入力のマッチングはいろいろ難しい。今回は広帯域とし、直結、4:1、1:4と比べてみたところ1:4が一番効率が高かったことから採用した。思ったより入力インピーダンスが高いようだ。
 Knobless Wonderが2W出力なので3dBアッテネーターを付けて1Wでドライブするようにした。
 出力はLCの狭帯域としている。これは効率を高めるためとKnobless Wonder専用とするためである。アイドリング電流は400mAに設定している。これでピーク35Wまで出力できた。
 入力回路も狭帯域にすれば50Wが可能と思われるが、手軽に作れることと10W出力できれば十分と思い、これで完成とした。ピークIdは8A程度であった。
 尚、出力にはLPFが必須である。今回シングルFETなので2次高調波をよりカットするため、定K型2段プラス極付き(14MHz)とした。結果としては法令に対しぎりぎりであった。今後製作する場合は定K型3段プラス極付がいいと思う。



Recently  I made the ultimate SSB transceiver called Knobless Wonder(VK3YE). On the good condition, It's possible to QSO with the whole in my country(JA). It's was a big surprise. However, with 2W output, there are days when QSO can not be done quite easily due to poor radio condition recently. . So I made a linear amplifier.

 I hope to get 10 watts. I found MRF 255 from the parts box.
 It is said that IMD is not good, but I think that it is reasonable FET to use lightly. It is also nice to use it with a power supply voltage of 12 V.

The circuit considered ease of manufacture, certainty and efficiency to some extent.

Matching of inputs is difficult. This time it was adopted because it was broadband and compared with direct connection, compared with 4: 1 and 1: 4 where 1: 4 was the most efficient. It seems that input impedance is higher than I expected.

Since Knobless Wonder is 2 W output, it was designed to drive with 1 W with a 3 dB attenuator.

The output is a narrow band of LC. This is to increase efficiency and to be dedicated to Knobless Wonder.
Idling current set 400 mA. With this, we could output up to 35 W peak.

It seems that 50 W is possible if the input circuit is narrowband type LC, but I thought that it would be sufficient if we could produce easily and 10 W could be done, and it was completed with this. The peak Id was about 8 A.

Incidentally, LPF is indispensable for output. Since it is a single FET this time, in order to cut the second harmonic wave further, it is set to constant K type 2 steps plus polar filter(14 MHz). As a result, it was marginal to laws and ordinances. If you plan to make it in the future, I think that it is good to have fixed K type three-stage plus polarity.

Let's enjoy Homebrew.

73's
JA2NKD Ryuu