ラベル PLL の投稿を表示しています。 すべての投稿を表示
ラベル PLL の投稿を表示しています。 すべての投稿を表示

2022年5月23日月曜日

DDS & PLL Tester

 無線関連の自作を行っているが、最近DDSやPLLを使用することが増えてきている。そんなときトラブルが発生したとき、原因調査でDDSやPLLが壊れていないか調べることがある。
 今までは、ブレッドボードで試験回路を作って調べていた。マイコン制御であるため、試験プログラムもいくつか作っていた。ということで、各種DDS,PLLを簡便に試験できるテスターを作ってみた。

【 HardWare 】
 ハードウェアといっても、ユニバーサル基板にArduinoとTFT-LCD、DDS等を乗せるためのpinソケットだけの簡単なものである。
唯一の特徴はタッチパネル付きのLCD(2.8inch)を使用したことでしょうか。

【 SoftWare 】
 今回のスケッチは、過去作成したものに継ぎ足しで作ったのでわかりにくいと思うがご容赦。 
 単純にDDS,PLLを選択し、リファレンスクロックと出力周波数をテンキーで入力することにより動作するという単純なものである。





【 Device 】
 試験できるDDS、PLLは以下のもの。
 DDS       AD9833,AD9834,AD9850,AD9851
                AD9833はサイン波、三角波、方形波を選択できる
   PLL        Si5351
                Si5351はCLOCK0,CLOCK1,CLOCK2を選択できる

【 操作 】
    (1) タッチパネルDeviceを選択
  (2) Ckockを入力しEキーをタッチ
            0を入力しEキーを押すと規定値が設定される
            AD9833-25MHz,AD9834-75MHz,AD9850-125MHz,AD9851-30MHz
            Si5351-25MHz
  (3) 出力周波数を入力しEキーを押す
            0を入力しEキーを押すと規定値が設定される
            出力周波数は 1MHz
  (4) 信号が出力される
    (5) RestartでTOPに戻る。


 以上簡単な構成である。スケッチで最も面倒なのは、タッチパネルのキャリブレーションと思う。ALL BAND TRANSCEIVERで説明しているので参考にされたい。

 スケッチ、回路図(PDF)     Sketch & Schematics

以下に回路図と各種DEVICEの画像を乗せておく。















2021年7月24日土曜日

ALL BAND TRANSCEIVER (4)

 今回の ALL BAND TRANSCEIVER で色々な課題があった。今回解説するBAND,MODEの制御もその一つである。
 タッチパネルで選択したBANDやMODEは数値化され制御を行う。具体的には変数 [BAND] 変数[MODE]に選択した数値情報が収納される。

 上図でPHOT1でBANDをタッチ、PHOTO2で希望BANDをタッチすると変数[BAND]にBAND番号が収納される。この変数を2進数にして各BITのHigh,Lowを調べI/Oに出力をしている。
全部で14BANDなので4BITバイナリーでD14,15,16,17に出力している。
sketchでは、
void DIO_BAND_set(){
  int bitdata = 0;
  int port_num = 0;
  for (int j=0; j<=3; j++){      // ポートをLowにリセット
    digitalWrite(14+j,LOW); 
  }
  for (int j=0; j<=3; j++){  
   bitdata = bitRead(band,j); // 変数[band]の各Bitを調べる。
    if (bitdata == 1){
     digitalWrite(14+j,HIGH);   // 1なら当該ポートをHighにする
    }
    else{
      digitalWrite(14+j,LOW); // 1以外なら Lowとする。
    } 
  }
}

Modeも同様にしてD18,19,20,21に出力している。

 Aruduino DueのD14-21ポートに出力されたBAND,MODE情報は、以降の処理に使いやすいように(FXMA108)で3.3Vから5Vにレベル変換をしている。
 BAND情報はD14-17から出力されレベル変換後TC4515デコーダーを使用し、各BAND個別信号を出力している。このTC4515はActiv Low 選択された信号がLow、それ以外がHighとなる。このためPNPデジタルトランジスタ(RN2201)を利用し選択された受信用BPFに電源を供給するようにしている。
 送信も同様にBPF選択を行っている。送信ではさらに TD62084というSink Driverで出力のLPFリレーを制御するようにいている。

MODEも同様であるが、選択数が少ないのでデコーダーに74HC238(3INー8OUT)を使用いた。これはActiv HighなのでNPNデジタルトランジスタ(DTC144)を使用しColinsフィルター切替を行っている。

尚、BAND情報は、Linear と Transverterのためにバッファ(74HC125)経由でDINコネクタに出力している。

 さすがにALL BAND TRANSCEIVERともなると、フィルタ、BPF、LPFの切り替え処理が非常に煩雑となることを実感した。今回極力手持ち部品を使用したため、どうも一貫性のない回路となった感じである。ご容赦願いたい。

今回は、あまり日の当たらない部分の解説なので、少々つまらなかったもしれませんが、備忘録としてUPしておくこととした。

DE JA2NKD Ryuu







 




2021年7月4日日曜日

ALL BAND TRANSCEIVER (3)

 ALL BAND TRANSCEIVER (3)

送信部


❶ マイクアンプ  
  マイクアンプは、コンプレッサーTA2011SとOPAMP(LM741)を切り替えるようになっている。またSSB送信試験用に1kHz発振回路を組み込んでいる。これで口笛による調整から解放される。この3回路をOPAMP(NJM7043)でミキシングしSSBはPSN回路に、FMはFMキャリア回路に送っている。
 
❷ AF-PSN回路 
以前blogに掲載した50MHzPSN送信機と同様の回路で dsPIC33FJ64GP802を使用し位相のずれたAFを作っている。このdsPICのソフトはTJ-Labの上保さんの作成されたものであるが、非常に優秀である。
 
❸ 直交変調器
 これも50MHzPSN送信機と同様MAX2452を使用している。特に調整回路がないのでキャリアバランス等の調整は行っていない。AFレベルを調整しても効果がなかった。何とか40dB程度である。他にも直交変調器のICはあるようだが、ほとんどがGHz用であり、HFに使えそうなものは見つからない。またDBMやスイッチを使ってディスクリートで組むこともできるが、回路規模が大きくなってしまう。その点MAX2452は外付け部品もなく簡単である。また運用してモニターしいただいているが、おおむね音質はよく、キャリア、逆サイド等は認められないとの評価をいただいている。この直交変調器にSi5351によるVFOを直接入力している。このVFOの周波数は運用周波数の2倍を入力している。50MHzであれば100MHzとなる。これで全バンド ダイレクトにSSBができる。
 
❹ 前置増幅器 
MAX2452の出力は非常に小さいのでMMIC(MSA-0886)で25dB程度増幅している。

❺BPF
直交変調器で出来たSSB信号をBPFを通すことによりスプリアスを除去させている。BPFは「トロイダル・コア活用百科」の2ポールBPFを使用した。

 ❻前置増幅器
 目的出力を得るにはまだ低いので再度MMIC(MSA-0886)で再度25B程度増幅する。オールバンドにはMMICが得意だ。
 
❼プリアンプ 
ファイナルをドライブするため100mW程度に増幅する必要がある。三菱の高周波パワーFETRD00HHS1を使用している。アイドリングは50mA

❽パワーアンプ
RD16HHF1プッシュプル。出力は10W以下なので十分すぎるが、全バンド安定して増幅するために採用した。ドライブレベルを調整し概ねMAX 8W 程度の出力としている。バンド差が大きく出てくるかと思ったが、意外にそろっている。

❾LPF
λ/4 5次LPFで「トロイダル・コア活用百科」を基本として設計している。

❿FMキャリア水晶発振器
ジャンク水晶67.18235MHzを基本波発振させ3逓倍し67MHz台としている。これにバリアブルキャパシタダイオードにマイクアンプからのAF信号でFM変調を行っている。オーバートーン発振ではほとんど変調がかからないので注意。

⓫FM用ミクサー
⓫の水晶発振信号とVFOを混合し目的のFM信号としている。以降はSSBと教養である。

⓬オシレータ回路
今回周波数の安定度、正確性を確保するためにオシレーター回路に拘った。必要とする周波数は、70.455MHzの第一中間周波数を455kHzに落とす70MHz、455kHz前後のSSBキャリア信号及びVFOである。
 70MHzhDDSAD9851を使用している。このDDSクロックは10MHzのTCXOを基準としてVCXO30MHzを PLLを組み安定化し供給している。またVFO(Si5351)用のクロック25MHzも30MHzクロックのAD9851で作っている。455kHzキャリアは10MHz基準のAD9850から作り出している。これらはすべて固定周波数なのでArduino-nanoを使用しコントロールしている。10MHzは外部からGPS基準信号等が入力できるようにしている。詳細は下部回路図を参照願いたい。こだわりのOSCである。

⓬VFOコントローラー
 今回はマルチバンドトランシーバーなので以前blogに掲載したタッチパネル付きVFOコントローラーを基本として採用している。ただこのトランシーバー用にカスタマイズしている。
 コントローラーにはAruino-Dueで、メモリー容量、スピード、I/O数等十分な性能がある。難点はどうしても大きいことであろう。特徴としてtっちパネルを採用し、多機能でありながら機械的スイッチの数を大幅に減らすことが可能となった。

⓭CATコントロール
Arduino-DueはUSBを2回路積んでいる。1個はプログラミング用、もう一つは外部機器との通信に使用できる。これを利用しパソコンと接続し「Turbo HAMログ」でデータ入力時に周波数を自動的に表示できるようにした。基本的な通信g理解できたので、トランシーバーを外部からコントロールできるようにすることも可能である。今後発展させていきたい。

 以上オールバンドトランシーバーの概要です。詳細については 省略させていただきます。

DE JA2NKD









 

 

2018年12月4日火曜日

AD4351 PLL Board

 AliExpressでAD4351PLL基板が格安で販売されているのを見つけ購入した。
ADF4351 35M-4.4GHz PLL RF Signal Source Frequency Synthesizer Development Board Z07 という名称で出ている。価格は $18.8である。
取り敢えず動作確認を行ってみた。
このボードの仕様は
Requency range: 35MHz-4.4GHz
Power supply: DC002 Interface DC4-9V typical 5V
Output signal: 2.2-4.4GHz fundamental wave (sine wave)
Output signal interface: SMA female
Default + -50ppm 25M import active crystal
Control: three-wire SPI control pins and lead locking pin allows all state functions,
including point frequency sweep and frequency hopping, stepping to be 1K,
low frequency step can be to 0.1K, the crystal. to decide.
Size: 7.6*3.7cm/2.99x1.46inch
と書かれている。
基本発振周波数は2.2GHz~4.4Ghzでそれ以下は1/2,1/4,1/8,1/16,1/32,1/64のプリスケラーで分周して出力するようになっている。
分解能はPLLの比較周波数に依存するため、基準信号とレジストリーの設定で色々出来るようであるが、Si5351PLL並みに面倒な設定が必要だ。今のところこのPLLをVFOとする予定はないので詳細のお勉強は後回しとして、色々公開されているファームウェアを使って動作試験を行った。
 ハードウェアは、Arduino-UNO、LCDシールドとこのPLLボードの3つである。(いづれも中華製である)
これで35MHz-4.4GHzまでの発振試験が出来る。
ハードウェアの構成及びファームウェアは以下をそのまま利用させていただいた。今回はオリジナル性はまったくない。

このPLL基板には基準クロックとして25MHzのクリスタル発振器が搭載されている。+-50PPMとかかれており、試験したところ1GHzで15KHz程度ずれていた。調整も不可能である。そこで手持ちの発振器(10MHz,+-2.5PPM)を外付けとした。これで取り敢えず1GHzで10Hz誤差程度に収まっている。
 
35MHz,430MHz,2GHzの出力を見てみた。
35MHz
クロック等のスプリアスが見られるがBPFで十分削除できるレベル。想定外に綺麗である。

430MHz
スパンが広いので色々見えているが、BPF等で十分対処できると思われる。
2GHz-1
これを見るとかなり近接スプリアスが多いように見える。
2GHz-2
スパンを500MHzにすると基準10MHzのスプリアスと思われる。BPFでどれだけ削減できるか実験が必要だがコンバーターの局部発振としてなら十分使えそうだ。

我家での発振周波数としては最高値を更新。4GHzも発振していると思われるが測定限界(3GHz)を超えており確認できない。PLLのLockが頼りである。

これを使う予定としては、430MHzのトランスバーター用ローカル発振器である。28MHz親機でカバーできる範囲が2MHzなので、2MHzステップでローカル発振器を切り替えることにより430MHzの10MHzをカバーしようという企みである。
出来れば1.2Gにも挑戦してみたいものである。

しかしこれが$18.8とは驚きである。